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ABSTRACT 3 ? g 8\5/

An extension of the previously reported synthesis capability
for a simple shock isolator is presented. Advances in the
engineering scope and the algorithmic efficiency of the previous
work are offered. A one degree of freedom system with a single
package of mass M. is to be protected from a multiplicity of shock
pulses. Two common situations are considered. In the first type
of problem a design is sought which minimizes the absolute
acceleration felt by the package subject ta relative displacement
limitations. In the second type of problem a design is sought which
minimizee the relative displacement subject to limitation on the
absolute acceleration felt by the package. Three design variables
are employed to characterize the bilinear spring and six additional
design variables are used to represent a piecewise-linear variable
damping coefficient. The synthesis technique employed is based
on an implementation of the gradient projection method, with
certain special additional features. Results for several numerical
examples are presented. By permitting a broader class of possible
designs it was found that a reduction of as much as 25% in the

criterion function value, at termination of the synthesis, could be

obtained in some cases. )
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SYMBOLS
time dependent coefficient of damping described
by C(0) thru C(5)

component of gradient in direction normal to
previous gradient

gradient of criterion function

distance from design to j constraint
modified gradient direction vector

absolute displacement of mass

maximum allowable absolute acceleration
absolute displacement of base

relative displacement between mass and base

absolute value of maximum allowable
displacement

.th . s .
unit vector normal to j constraint pointing into
the acceptable design region

constant damping coefficient
new design to be analysis
best design obtained at any time

variables describing piecewise linear damping
with respect to time

allowable lower limit on jth variable

allowable upper limit on jth variable
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DT

LC
M
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Max {Ma.xlzil}

Max lx |
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Max l z, l

N

s,(t)

6

absolute value of maximum allowable time rate
of change of damping

spacing in time of damping variables ¢(0) thru
C(5)

constant spring constant

force of bilinear spring system

first spring constant of bilinear spring system
sum of K1 + K'

second spring constant of bilinear spring system
maximum possible distance in given direction
before encounte;_;ing const?aint

number of pulses comprising the load condition
mass

maximum of maximum absolute accelerations
for all load conditions

maximum of maximum relative displacements
of given design for all load conditions

maximum absolute acceleration for a given
design and the ith lbad condition

maximum relative displacement of given design
for ith 1oad condition

matrix with columns corresponding to vectors
of normals to active constraints

the ith shock pulse

difference in lengths of springs




CHAPTER 1
INTRODUCTION

1.1 Relation to Previous Work

The research reported herein may be viewed as an extension
in scope and algorithmic efficiency of a synthesis capability for
the automated optimum design of one degree of freedom shock
isolators. The previous work reported in Ref. 1 considered a
constant spring stiffness and a damping coefficient as design
variables to be determined by the synthesis process. Two distinct
problem types were dealt with. In the first type the objective
is to select the spring stiffness and the damping coefficient so as
to minimize the maximum absolute acceleration of the package
subject a prescribed limit on the maximum relative displacement,
In the second type of problem the objective is to select the spring
stiffness and the damping coefficient so as to minimize the maxi-
mum relative displacement of the package subject to a prescribed
limit on the maximum absolute acceleration. The synthesis tech-
nique employed was a modification of the steep-descent alternate
step methods (see Ref. 9). Inthe extension reported here the
simple spring is replaced by a bilinear spring and the simple

damper is replaced by a damping device capable of supplying a



preprogrammed time dependent damping. This results in a
synthesis problem having nine design variables.
The purpose of this study is to explore the influence of con-

sidering additional design variables which admit a wider class of

possible designs than those previously considered.

1.2 Description of Problem

Consider the simple shock isolator of Figure 1. The spring
system is comprised of two concentric springs of unequal lengths.
Thus, the shorter spring is not compressed until the deflection of
the mass exceeds the difference in spring lengths, §. The charac-
teristics of this spring system are represented by the bilinear
force-displacement curve shown in Figure 2. Three design
variables are required to describe the force-displacement curve

K., K

1 2 and the gap, §. Noting that K_ is K_ + K1 from Figure 1,

2 1

the force as a function displacement is given by K (z) =

Klz forlz| < §

K1 5 + Kz(z-a) for z > §

K, 8 + Kz(z+5) for |z| > 5, z<0

The coefficient of damping was chosen to be a piecewise

linear continuous function of time. An illustration is shown in




. Figure 3. This coefficient of damping has six design variables.

The last value of the damping, C(5), continues ontot - w These

six variables are termed C(0) thru C(5).

1.3 Formulation of Problem

The synthesis problem with the objective of minimizing the

maximum absolute acceleration can be expressed as:

Given the preassigned values of M(M=1) and DT,

find values of Co’ ooy C5, Kl’ KZ’ and § such that for
i=1,2, ..., LC.
. [ Max (Maxlxll)] -~ Min

i
subject to the following side constraints,

lc. - c
DT

o cBT forj = 0,1,2,3,4

0 < CAL; < C; < CAU,  forj = 0,1,2,3,4,5,

0 < CAL, < K < CAU K < K, < CAU

- 6 — 6 1 7

0§6<2A

behavior constraint,

Max {z.} < zA fori = 1,2,...,LC

and governing technology




z +cz +K = S.(1). P =
zi + T zi (zi) i(t) i 1, , LC

The synthesis problem of minimizing the maximum relative
displacement can be stated in a similar form:
Given the preassigned values for M (M=1) and DT

find values of Co' ..., C

fori = 1,2,...,LC
[ Max {Maxfzil}] -~  Min
i

» K, K

5 1 2 and § such that

subject to the following side constraints,

Ic,-c.+1| < CBT forj = 0,1,2,3,4.
DT
0 < CAL, < C; < CAU, forj = 0,1,2,3,4,5

0<5<zA

0 < CAL, < K, < CAU

K <K <CA
| $K,<CAU

6 7

behavior constraint,
max | €z + K(z)l < xA
and governing technology,

z +c-z + K(z) =S(t) i=1,..., LC
1 1 1 1




CHAPTER 2
ANALYSIS

The equation of motion for the mass in Figure 1 is

Mx = Ky -x) + T (y - x)
By making the substitutions z = y - x, z = y - );, and z = y -x
the equation becomes

Mz + Tz + K(z) = My. (1)

.

The mass, M, is taken to be 1.0, and y is then viewed as an input

acceleration, S(t). The acceleration felt by the mass is

x = zz + K(z).

Equation (1) is difficult to solve in closed form; therefore, a
numerical integration (Runge-Kutta) was used. Details and
examples of this method are given in Appendix I.

The analysis procedure terminates when a maximum displace-
ment is found after the duration of the input pulse S(t). Because of
the numerical approach used to solve Eq. (1), the type of pulse
does not have to be confined to ''square'' pulses, although square

pulses will be the only type employed in this paper.



CHAPTER 3
SYNTHESIS

The synthesis method answers two questions. Which direction

to go from a given design point and how far to go in that direction.

3.1 Direction of Travel

If the present design is not on a constraint, the best direction
to move in is the direction of the negative gradient of the criterion
function (See Figure 4). The gradient of a function is a vector of
the first partial derivatives of that function. It is the direction of
most rapid increase in value of the function and similarly the
negative gradient is the direction of most rapid decrease in value
of the function. Because a closed form solution was not obtained
for the equation of motion, an explicit function for the gradient was
not available. A forward finite difference approximation to the
gradient was obtained by increasing each of the variables individ-
ually and noting the change in criterion value per unit increase of
each variable.

If the design point is constrained, then the synthesis procedure
first determines whether it is advantageous to remain on the con-
straint or to get off of it. This is important because a constraint

6




which is presently active may not be active at the optimum design.
The result of remaining on a constraint,that is not active at the
optimum design, is getting '"cornered' at a vertex of constraints
and never reaching the true optimum design.

This synthesis procedure avoids '"cornering' by checking the
inner product of the ‘'negative gradient' and the normal vector to
the active constraints. The normal to the constraint surface used
here is the one which points into the acceptable design space. If
the inner product is greater than zero, * then the new design is
allowed to be off the constraint (See Figure 5). This test is
executed for each active constraint at each point in the design path,
since it is possible for the design path leading to the optimum ..
design to travel along a constraint for a while and then leave the
constraint. Looking at this another way, it is seen that a positive
inner product means the angle between the two vectors is acute and
the negative gradient has a component in the same direction as the
constraint normal. Thus, it would be useless to move along the
constraint when'moving off it reaps more gain.

If the inner product described above is less than or equal to

zero, it means a move in the negative gradient direction will

* The inner product of two vectors A and B is defined as a number
equalto Za, b, '
i 1 1




violate the active constraint. In this case the best move (in the
gradient sense) is in the direction given by the projection of the
negative gradient on that constraint (See Figure 6). A method for
finding this direction, (1_1.), is given in Refs. (2) and (3) This
direction may be viewed as the direction of constrained steepest
descent.

Fundamentally 4 is the vector which is the component of the
gradient lying in the space orthogonal to the normals of the active
constraints. That is, u is the component of the negative gradient,
-g, minus N(NTN)-1 NT (-8) ‘where N is a matrix composed of
columns which are the unit vectors normal to the active constraints
and pointing into the acceptable design region. In effect the com-
ponent of the negative gradient which would pierce the unacceptable
design region has been subtracted from the negative gradient to
find the u direction (See Figure 6).

Figure 6 depicts the case where N is a single column, Aj‘
Then NTN = Aj Kj =1, because Aj has been normalized to be a
unit vector. NT(-E) is the component of Aj in the (-g) direction or

the component of (-E) in the Aj direction or Aj - (-g). The direction

u= -E - N(NTN)-1 NT(-g) is then

- A -1 A —
-g - A ()7 (A - (-g))



The method of derivation of the \-; direction is described in detail

in Appendix III.

3.2 Distance of Travel

The question how far to go is easily answered for the case of
linear constraints.* The maximum distance that it is possible to
go in a desired direction without entering the unacceptable region
is denoted by L.

To illustrate this procedure, consider a general linear

constraint

where C, are the variables of the vector c(0), c(1), ..., C(8) and
aij and bj are constants. The normal to the jth constraint is the

vector A_or(a ., a,,, ..., a,.). Figure 7 shows howu, and A,
j 0j 8j j

1j
.look in 2 dimensions. The perpendicular distance from the current

design point to constraint j is called qj in the sketch. The value of

q:i for linear constraints is

For all the constraints the minimum of qj divided by the absolute

* The .fol;lowing is taken from Ref. -2.
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value of the inner product of u and Aj'

q.
P —

Min 123 . 1—1-‘ ,

is sought to find L. Only constraints for which the inner product
of u and Aj is < 0 are used because (u, Aj) > 0 signifies no

component of u will enter the unacceptable region by piercing the

.th . . .
Jt constraint. The quantity L will always be > 0. Since the pro-
8
gram is always in the acceptable region characterized by = aij
i=0

Ci < bj, qj is always greater than or equal to zero and Il—; . Ajl > 0.

A similar treatment employed for the nonlinear constraint by
approximating it with its tangent hyperplane has been found to be
very successful in the synthesis method. The procedure to find L
is explained in more detail in Appendix III.

The length L does not necessarily produce an acceptable
design because nonlinear constraints have been linearized to obtain
it. (See Figure 8).

If the program is at point (1), which is on constraint i, the
modified gradient 1 will be along constraint i. The associated
length L from the procedure LINLEN will take the new design to
point (2). Point (2), however, lies in the unacceptable region, with
respect to the nonlinear constraint, but is seen to be acceptable

with respect to the linearized approximation for the constraint j.
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The synthesis program checks point (2) for both criterion value
and acceptability. If either test is nof passed,.the length L is
multiplied by 0. 85 and a new move vector equal to 0. 85 L U is used
to generate a new design to be checked. This procedure is
repeated until either an acceptable point with lower criterion value
is found or until the length becomes less than 0. 00001 of its
original value (Maximum number of cycles is 52).

For an explanation of what the synthesis does if the latter

occurs, the reader is referred to section 3. 3. 1.

3.3 Special Features

3.3.1 3§ Difficulty. As the synthesis progresses, it checks

the "inlineness' of the negative gradient and the behavior constraint
normal. It was found that with nine variables in the redesign cycle
the inner product of the unit vectors corresponding to the negative
gradient and the normal to the behavior constraint was often less
than -0.999. This means the gradient and deflection bound are in
a position similar to that in Figure 9.

It is seen that the component of the negative gradient which
will not pierce the unacceptable region is very small. However,
it was observed that the negative gradient component of the critel;ibn

with respect to the spring gap and the component of the normal to
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behavior function with respect to the gap were +0. 999 and -0. 999
respectively. The gap was then held fixed and the synthesis was
carried on with the remaining eight variables. In doing this an
assumption had to be made. Consider that the results of several
eight dimensional optimizations, each with a distinct fixed value of
8, are available. It must be assumed that a plot of optimum
criterion function values versus gap distance is unimodal

(i.e. has one minimum over the allowable range of values for ).

The one dimensional search over § is terminated when

5 - 8 | < 0.00001 in.
new current’ -—

In the synthesis problem where maximum absolute
acceleration is the criterion function, special attention is given to

the cases where § For, as seen in Figure 10,

> 6 .
new current
increasing § results in decreasing the over-all stiffness of the

spring system. (i.e. choose any x > § current and observe K(z)

.) The softer spring system (with § = §__ )

6118W < K(Z)l é new

current

will have a larger maximum relative displacement which may place

the new design in violation of the relative displacement constraint.
If this violation occurs, a move (with the first eight varia-

bles) in the direction of the negative gradient to the behavior

constraint will decrease the maximum relative displacement
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enough to make the design acceptable with respect to the behavior
constraint. However, precautions must be taken to assure that
the design is also acceptable with respect to the side constraints.
This can easily be accomplished by employing the u direction
(discussed in the synthesis chapter) with the negative gradient to
the behavior constraint used in place of the negative gradient to the
criterion function. Furthermore, it is seen that by using the
criterion function as a constraint in obtaining the direction u, the
increase of the criterion value of the new acceptable point will not

be as large as it would be if this constraint were omitted. (See

Figure 11).

3.3.2 Hop Out. In the event of the u direction becoming
zero, the program will examine a point a short distance from each
of the active constraints to see if a non-zero u can be found. If
it can, it is the new direction of travel. This is a precaution which
does not have to be taken if the gradients are found exactly, because
when 1 is a zero vector the design satisfies the Kuhn-Tucker
(Appendix IV) conditions and a constrained minimum has been
found (assuming the design space is convex).

3.3.3 Zig-Zag. Multiple load conditions for dynamic

systems often cause the criterion function to have a discontinuous

gradient. It was found that with multiple load conditions cusp
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areas similar to those shown in Figure 12 were encountered.
Usually, no further progress can be made with the gradient method
at a cusp point because the negative gradient points in a direction
giving larger criterion values than that of the cusp point. (See
Figure 12).

The direction of travel employed for the cusped region was
obtained by performing a single step of the Schmidt orthogonali-
zation process. This process is a method for obtaining mutually
orthogonal vectors from a set of linearly independent vectors. The
two linear independent vectors for the process are the negative
gradients at two consecutive acceptable designs. The negative
gradient of the first design is used as the base vector. Then the
direction of travel becomes the component of the negative gradient
at the second design which is orthogonal to the base vector. An
example in two dimensions is shown in Figure 13.

This procedure may be viewed as treating the Pulse 2
contours as constraints and only the component of the negative
gradient which does not pierce this "unacceptable' region is used.

—

For more than two pulses the direction u, may have to be further

modified. If 53 is the gradient of the third pulse contour :1.2 = -E?’

- (E3 . EZ) (EZ) - (-g3 . \il) ‘i). where §3 is the negative gradient

where pulse 3 is active. The synthesis procedure used the method
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whenever two consecutive designs have negative gradients which
have an inner product less than (-0.70).
A description of the computer program and associated flow

chart can be found in Appendix V.




CHAPTER 4
NUMERICAL EXAMPLES

4.1 Introduction

The purpose of the numerical examples is to examine the
influence of increasing the number of design variables on the per-
formance of the shock isolator with respect to the results pre-

viously reported in Ref. 1.

4.2 Test Case

First, an example case was used to test the computer syn-
thesis program. The example considered is found in Ref. 1, page
24. This case involves only two variables - constant coefficient
of damping and constant spring constant. There are two reasons
why this particular case was chosen. It has the characteristic
that at the optimum design the nonlinear deflection constraint is
active and the normalized component of the gradient in the K
direction is small. This small component invites many values of
K to yield nearly the same criterion value. This means there is a
long region where the deflection constraint and the criterion
function contours nearly coincide. This is seen in Ref. 1,

Figure 21.

16
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The synthesis program reported herein can be used to solve
the two variable problem by letting CBT = 0 and keeping § = 0, i.e.
if CBT = O,the damping coefficient is constant with respect to time.
If § = 0, the spring system has only one spring constant, KZ'

The results were very similar considering that two indepen-
dent methods were used in both the analysis and synthesis pro-=
cedures. The load condition consisted of two pulses, the first 1000

in/sec2 for 0. 05 seconds and the second 2000 in/sec:2 for 0.01

seconds. The results are shown in Table 4.

4.3 Single Load Condition

It was suspected that there exists a region containing a large
number of designs all having the same optimum criterion value.
This belief is supported by the results of both single and multiple
load condition cases. Three distinct starting points were used and
three distinct terminal designs resulted. Each terminal design had
the same criterion value associated with it. This phenomena has
been experienced before in structural synthesis problems (See
Refs. 8 and 9).

The three initial designs chosen for the single load condition
case are listed in Table 1 under Case ls. The load condition was

the pulse.
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(1000.0 in/sec® ¢ < 0. 05 sec.

s(t) = <

0 t > 0. 05 sec.
The computer input data determining constraints and parameters
for Case 1s is listed in Tables 2 and 3. The terminal designs and
the percent reduction in criterion values are listed in Table 4.
The percent reduction in criterion value is calculated with respect
to the criterion value obtained in Ref. 1 (See Table 4). It was felt
that this value was a fair standard even though the case in Ref. 1
was a multiple load condition case. The reason is that the active
load condition at the optimmum design of Ref. 1 was the pulse S(t)
defined above. It is seen from Tables 1 and 4, for Case ls, that
these distinct starting points have terminated at three distinct
designs all of which are characterized by approximately the same
percent reduction in criterion value. An illustration of the

reduction in criterion value versus the computer running time is

shown in Figure 14.

4.4 Multiple Load Conditions

4.4.1 Introduction. A very salient characteristic of a

multiple load condition synthesis problem is that the design which

optimizes the system for any single load condition will not, in
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general, also be the optimum design for the other load conditions.
For example, 3 distinct starting points were used to find the best
possible design for a single load condition. The final criterion
value was between 626 and 635 in/secz. See Table 4 and Figure 15.
However, when these designs were subjected to the second load
condition of pulse set II, the maximum absolute acceleration was
found to be near 1000.0 in/secz. Thus, if the second pulse is
included the value of the criterion function at this design is 1000
in/sec2 rather than 636 ,in/secz. Adding pulses can change the
form of the criterion function over major portions of the design
space. If the additional pulses change the form of the criterion
function in the region of the optimum design obtained ignoring the
additional pulses, then the previous results are invalid.

With this in mind, it is easily seen why all load conditions
must be observed as the synthesis progresses. It is also important
that the constraints for all the load conditions be satisfied in order
that the design be acceptable. Therefore, the problem consists of
choosing the direction which best minimizes the criterion function
of all load conditions and will not violate any of the constraints for
all the load conditions. This means it is possible to have load
condition 1 possessing the maximum absolute acceleration and load

condition 2 possessing a maximum relative deflection which puts
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the design on the deflection constraint.

4.4.2 Finding an Advantageous Starting Design for the

Multiple Load Condition Problem. To find a good starting point

with minimum expenditure of computer running time the computer
program used one load condition which was thought to be more
critical than the others. This particular load condition was used
for ten minutes of running time. Ten minutes was used because it
was found that the criterion value decreased slowly after this time
as shown in Figure 14. During this time all constraints of the
multiple load condition problem were satisfied. After 10 minutes
an acceptable design resulted and was used as the starting point
for the multiple load condition problem. The method described
above was found to improve efficiency with respect to computer
running time.

4. 4.3 Results for Multiple L.oad Conditions. The results

obtained from two synthesis problems previously worked in Ref. 1
confirm the statement, that better or equal designs with respect to
criterion values can be obtained by increasing the number of design
variables. The two multiple load condition cases were Case Zm

for
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5,,(t) = 2000.0 in/sec’ 0.0 <t< 0.001 sec.
Pulse get I = SZl(t) = 200.0 in/sec2 0.0<t<0.01 sec.
; 2
S3l(t) = 2000.0 in/sec 0.0<t<0.01 sec.
and case 1 for
m
] 2
Slz(t) = 1000.0 in/sec 0.0<t< 0.05 sec.
Pulse set II =
] 2
SZZ(t) = 2000.0 in/sec 0.0<t<0.05 sec.

A summary of starting designs, input data specifying side and
behavior constraints and terminal designs for the more sophisti-
cated shock isolator reported herein and the shock isolator of
Ref. 1 can be found in Tables 1 thru 4.

A comparison of the terminal designs and criterion values for
Cases lm and ls reveal the effect of adding another load condition

to a single load condition synthesis problem.

4.5 Displacement Results

The results of treating the maximum absolute acceleration as
a behavior constraint and the minimum maximum relative displace-
ment as the criterion function did not yield significant improvement

with respect to the percent reduction of criterion value for the one
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case available in Ref. 1. Two initial starting points were used.
The same terminal design was obtained for each case. A summary
of the initial design, constraints and terminal designs for Ref. 1
and the increased design variable cases are given in Tables 5 and 6.
A two dimensional graph of the design space near the terminal
design for the displacement problem is shown in Figure 16. It is
felt that the upper bound constraint on the coefficient of damping
was placed at a value too low to allow the damping to become any-
thing but a constant. As the computer program progressed, all
the damping variables increased. This is logical because a stiffer
system will produce a smaller maximum deflection. One by one
the damping variables reached the upper bound. Since increasing
damping was not allowed, the modified gradient direction focused
all attention on the spring system as the main design variables.
The final design resembles that of Ref. 1, except for the gap and
K2 as is seen from Figure 17, If the spring system consisted of

only one spring constant and no gap variable, the resulting design

would have been identical to that of Ref. 1.




CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

The results have revealed that more desirable shock isolator
performances can be obtained by allowing the coefficient of damping
to be a piecewise linear continuous function of time and replacing
the single spring with a bilinear spring system. The percent
reduction in criterion value with respect to the results of Ref. 1
was chosen to be indicative of the degree to which a shock isolator
performance was judged more desirable. A summary of percent
reduction in criterion values and final designs appears in Table 4.
Associated terminal designs are depicted in Figures 18 thru 21.
The percent reduction in criterion values for the Case Zm were not
as significant as those for Case lm. It was felt that this was due to
the shorter time duration in the load pulses of Case Zm.

The synthesis method employed consisted of three types of
moves in the design space: (1) moving in the negative gradient
direction if no constraints were active, (2) deciding whether to
remain on active constraint or to move off it, and (3) when
remaining on an active constraint finding the direction of travel
containing the largest component of the negative gradient.

The results showed distinct terminal designs with the same
23
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criterion value. It is felt that this phenomena, which has been
observed in previous synthesis problems (See Refs. 8 and 9), can
be attributed to a common characteristic. of: the terminal design,
such as perhaps energy absorbtion.

There are several things that have been investigated in this
study that represent advances beyond the two design variable
system reported in Ref. 1. Because of the numerical integration
technique employed in the analysis, the program has the capability
of working with any type of pulse. The pulses do not have to be
definable in terms of a function. A series of points from a
recorder could be used.

All of the developments in the modified gradient direction can
be applied to a general N dimensional design space. The improved
shock isolator synthesis program can be specialized to take the
form of the two design variable  case by letting the rate of change
of damping with respect to time be zero and letting § = 0.

The method of using normals to the constraints to keep from
entering the unacceptable region lends itself quite easily toilinear
constraints. A linear approximation to the nonlinear behavior
constraint proved successful. A sitwmation where normals to active
constraints cannot be employed successfully arises when an

unreasonable amount of computer time is required to calculate them,
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This capability could be extended further by adding more
variables such as the time between damping positions (See Fig. 3).
The number of damping variables, spring constants and gaps could
also be increased. Further extensions could include applications
of variable damping and bilinear spr'ing systems to problems with

more than one degree of freedom.
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FIGURE 3. TIME DEPENDENT, PIECE WISE LINEAR,
CONTINUOUS DAMPING
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FIGURE 5. CONSTRAINED DESIGN POINT
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FIGURE 6. DIRECTION OF CONSTRAINED STEEPEST
DESCENT



32

jth CONSTRAINT

(j+1)th CONSTRAINT

CURRENT DESIGN
POINT R
PROJECTION OF U ON a,

(PROJECTION OF u ON Aj,= O)

DIRECTION OF TRAVEL, ©

UNACCEPTABLE REGION

FIGURE 7. DETERMINING HOW FAR TO GO BEFORE
CONSTRAINT IS ENCOUNTERED
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ACCEPTABLE REGION
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DESIGN £
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-
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FIGURE 8. L FOUND BY LINEAR APPROXIMATION TO
NONLINEAR CONSTRAINT
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NORMAL TO
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NEGATIVE GRADIENT

DESIGN POINT

UNACCEPTABLE REGION
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FIGURE 9. NEGATIVE GRADIENT AND NORMAL TO
ACTIVE CONSTRAINT WITH INNER PRODUCT
LESS THAN -0.999
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K(2) ‘

K(Z) CURRENT

K(Z) NEW
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FIGURE 10. EFFECT ON STIFFNESS OF SPRING SYSTEM
WHEN S IS INCREASED
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Decreasing Contours of Constant Criterion Value

",Linear Approximation to Criterion
2,3 Function Taken at Unacceptable
Point (Treated as a Constraint).

Design Resulting from Move in u
Direction Has Criterion Value.

Less Than

Ci.fl

u Design Obtained by Moving Normal
Unacceptable to Behavior Constraint.
Point
Un;ccc?ptable Behavior
egion Constraint
C, ’
FIGURE 1l. ENTERING ACCEPTABLE REGION WHEN

BEHAVIOR CONSTRAINT IS VIOLATED



CONTOURS
OF PULSE |

NEGATIVE
GRADIENT
TO PULSE

2

37
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PULSE 2
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NEGATIVE DECREASING
TO PULSE | VALVE

FIGURE (2.

TWO DIMENSIONAL REPRESENTATION OF
CUSPS IN CRITERION CONTOURS
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LINEAR APPROXIMATION TO
CONTOURS OF PULSE 2
(TREATED AS CONSTRAINT)

NEGATIVE GRADIENT TO
PULSE 2

DIRECTION OF CONSTRAINED
STEADEST DESCENT, U,

FIGURE I3.

Ci

METHOD OF TRAVEL IN CUSPED REGION
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FIGURE 15. COEFFICIENT OF DAMPING VERSUS TIME
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APPENDIX 1

The equation of motion was obtained by Figure 1, using
Newton's law ZF = M-x, where M = mass and x = acceleration.

The forces acting on the mass are

+T-(y-% + K(y-x)

Then Mx is

3

+E(y-x) + K(y-x) (I-1)

y -xand X = y - z putting this in (I-1)

Letting z = y - x then z

gives
Mz + Tz + K(z) = MY (1-2)

Letting M = unity and replacing y with S(t), the input

acceleration, (I-2) becomes
z + cz + K(z) = S(t) (1-3)

The acceleration that the mass 'experiences' is equal the
acceleration of the mass with respect to a fixed point. That is

absolute accelerationx =y - z.

From (I-3) it is seen that the acceleration felt by the mass is
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Sit) - z =T+ z + K(z).

It is difficult to solve (I-3) explicitly because of the characteristics
of €(t) and K(z). A numerical integration technique, the Runge-
K\lxtta method has been chosen to obtain the unknown displacements,
velocities, and accelerations. The Runge-Kutta method is cumber-
some if hand calculations are used, but it lends itself quite easily
to autormated computation. The method is accurate and efficient
with respect to computer storage space for only information per-
taining to the previous point is needed to obtain the next point. The
Runge-Kutta method is of order h4.

In order to use the Runge-Kutta method equation (I-3) had to

be transformed into two first order simultaneous equations.

Let
dz _
at ¥
and y=z=-c* z-K(z) + S(t)

The ‘general formula for two simultaneous ordinary differ-

(4)

ential equations is shown below" .
Let dz/dt = £, (t, z,y)
and

dy _
dt fz (ts z, Y)
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also
K, = fl(to,zo,yo) At

L, = fZ(to’ zo'yo) At

1 1 1

Kz = fl(to+2 At, z°+2 Kl, yo+2 Ll) At

L =f(t+-l-At z +1 K y+-l—L) At
2 2o 2 00271”0021

K =f(t+lAt z +1 K y+lL) At
3 1o 2 Yo 2 T2 70 2 2

L =f(t+-1-At z ++ K +-1-L) At
3 2V 2 BF BT B YT 2 2

K, = fl(to+ At, z°+K3, yo+L3) At

&
I

.= fz(t°+ At, z +K, vt L3) At

Then going from the point (zo, Yy to) to ('zo+A z, y tAy, to +A t),
where At is specified, Az and Ay are found from the formulas

below.

Az = -:;(K1+2K2+2K3+K4)
Ay = % (Ll + 2L2 + 2L3 + L4).
For this case,
t = time
z = displacement
y = velocity
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Furthermore, from (I-3)

dz

"
|
1
«

£, 2 y) = = T) - 2 - K=) +50)

This method may easily be extended to N equation for dx, /dt,
de/dt, cees dxn/dt and put in matrix form(s). However, it was
found to be too time consuming for the 2 x 2 matrices resulting
from this second order equation.

The next step is to obtain a feasible error analysis and
thereby control the step size so that one may place a tolerance at
any point on the unknowns z and y. The Runge-Kutta method has
error of 0 (h4). Max Lotkin in reference (3) gives an error bound

for the ith unknown as

where h = At
lfi (t, Xys eees xn)l > M
and

ptg+r
9 fi (t,xl, cees xN) LPtatn

< ————(——————
8 tP ax9 Byr Mq+r+l

for p+q+r < 4.
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Recall that fl(t,x,y) = dz/dt and fz(t,x, y) = dy/dt. In order

to obtain a non-zero error bound, r was set equalto l and p=gq =

0.

Then |yl < M, |df1/&y| = 1.0 = L/Mz.

or, L = MZ and IEII that is the error of y is
< 2 M- e v

In terms of physical quantities this means that the error is
proportional to M9 or y9 or the velocity to the ninth power. For
M > 1.0 this is an intolerable error. To check the validity of this
error analysis an example equation was solved both exactly and by
Runge-Kutta method and the difference at each solution point was
recorded along with the error bounds given by the formulation
above.

The equation x" + x' +x = (t-1) exp (-t) + cos (t) has the
solution x = t + exp(-t) + sin(t) for the initial conditions x(0) = 0
and x(0) = 2.

The predicted error was found to be as large as 104 times
the actual error. It was concluded that the error analysis was too
conservative to be used for step size control.

A rule of thumb for step size control is given in Reference 6.
The rule states that the ratio (KZ-K?’)/(Kl -KZ) from equation (I-a)

should be less than 2%. Upon examining this, it is seen that this
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method would not be efficient if the systemn were large and the K's
for each unknown had to be checked at each point. It was concluded
that a predetermined step size, obtained by observing the conver-
gence of the solution as the step size decreased was not out of
order for this problem.

A test analysis case using the proposed Runge-Kutta method
was done for a spring, mass, damper system which has constant
spring stiffness equal to 36.5 1b/in, mass of one and

1000. 0. t < 0.05 seconds

S(t) =
0.0 t > 0.5 seconds

The exact solution found in Reference 1 and that obtained by
the numerical technique are respectively: maximum acceleration
893. 6 in/sec. 2, 893. 68 in/sec. 2 maximum deflections 1.1 in. and
1.1025 in,

Both of these maximum quantities occur at the same time.

It was concluded that the Runge-Kutta formulation would be accu-

rate and efficient enough to use for the analysis.
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APPENDIX II
CONVERGENCE

A valuable but conservative convergence criteria is given in
Reference 7. However, operating computer time is an important
factor in optimization problems. It was thus deemed worthwhile
to further explore this termination criteria in order to (1) place a
less conservative relation between the true optimum merit and the
best merit obtained by the synthesis program, and (2) reduce the
costly computing time spent trying to lower the merit value when
it is already within a prescribed tolerance of a local optimum
design.

The tolerance ¢, where ¢ is greater than zero, is defined as
the difference between the merit at design point 5 and the true
focal optimum SO, or global minimum if the acceptable design
space and criterion function are convex. According to the ¢ sign
convention used here, ¢ would be less than zero if a maximum
were sought.

The reference proves that if Eo is the optimum design and

—

M(Co) the optimum merit, then at any acceptable design point, C,

M(C) - M(C) < « (11-1)
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provided the inequality below holds.

[3(5) < €/2MLa (11-2)

-—

Reference 7. states that if B(C) goes to zero this condition is
equivalent to the Kuhn-Tucker conditions. (See Appendix IV)

The quantities L, M, and a are defined below.

Number of design variables defining the space.

M
The maximum ''distance' between two acceptable points

L
A value for L is obtained from

in the design space.

M
LZ = 3 (C;lpper - Ciower)z’ Ctilpper and

i=1

lower are the bounds of the variables such that all the

C.

i
acceptable points are enclosed in the rectangular space

of dimensions

1

{Cupper . Clower’ Cupper ) Clower’}"ﬁcupper_c ower}
o o 1 1 8 8

8 8

SQRT ( = (ng) iz)/SQRT (z giz)
i=0

a =
i=0
where g; are the components of the gradient -g. and V,1is

the matrix (NTCT NTC)-I.

The contention here is that (II-2) really implies

M(C) - M(Co) <K' ¢ where K' < 1. Starting with
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M) -M(C) T (€-C)T g,

the reference shows that the gradient, §, may be rewritten for

convenience as

—_ - q
= = > -
g = P, (C)g + =7 4. u, (11-4)
i=1
where vy, are the scalar components of vq(E) NTC T((—J-) g equal to

{-yl, Yor oo ‘Yq} and q is the number of active constraints.
~ T
Pq (C) =1 - NTC - vq - (NTC)

u, in (I1-4) are the normalized vectors spanning the subspace
defined by the independent vectors of NTC or those unit normals to
the active constraints. Let (C - CO)T be denoted by ;:' for

simplicity., Then y'g of (II-4) becomes

- q
=T T —- T
ye=yPCg+y Z yu
i=1
or since -yi's are scalars
q
ve=yPCg+ Z 5 u (11-5)
i=1

It is given that B (C) < ¢/ZML.

~ -1/2 .
Bl (C) = Max{%yivii/ ) i=1,2, ... M (11-6)
i
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Vi are the diagonal elements of Vq. Furthermore,
B(C) = Max {[|Pq(C)g]]. B1(c) (11-7)

Thus from (II-2) Bl (C) < ¢/2LMa and solving the inequality (II-6)

-1/2
or
. < ev.,llz /2mLa
i-— ii
q
2
Using X viill and knowing IYTuil < in| luil and 1lui| g 1
i=1 _
with the fact that lyTl cannot be greater than L, the term
q q
Z v, (yTu,) of (II-5)is < Le¢ .= v..l/zl mla.
i=1 ' T =1 M

Using (II-7) again,
[1Pa @ ll < e/omia

thus

y' P ©F < Iy"| - P ©F] < Le/2ima. (u-8)
Then (II-1) becomes

—r R e q
M(C) - M(Co) < e(.z1 vi:/2+%)/mn.
1=

2 2
Since a = % %2 vij the quantity
J i
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i=1
Since each of the terms are less than 1 (M=9)
9

(=
i=1

w12y 2/Ma <1
and is the previously sought quantity K'.

In (II-8) the right hand side can be replaced with ¢', the new
tolerance. Then a relation interms of Ke is obtained to be
placed in (II-2) which is the test of the validity of (II-8). Now

(11-2) becomes

€ Ma

ﬂ(C)S.q
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APPENDIX III
DIRECTION AND STEP SIZE

The constraints which any acceptable design must obey are 29

in number. Twenty-two are placed in the coefficient of damping.

C.-C,. ., < CBT+. DT forj

0,1, ..., 4 (5

J i+l
(4)
Cj - Cj+1 s CBT hd DT fOr J = 0, 1, oo ey 4 (5)
Cj < Cjupper j=0,1, ..., 5 (6)
(B)
Cj > leowe'r j=0,1,....5 (6)
Five are placed on the spring system.
C6 = K1 > K1 lower
C7 = KZ > Kl
(5) (C)
C7 < K2 upper
C8 = gap < allowable deflection
C8 = gap > 0

Two are placed on the relative deflection.



71

Maximum deflection < XA

(2) (D)

Minimum deflection > -XA where XA >0

TOTAL 29
The matrix,referred to as NTC, is composed of columns which
are the normal] vectors of the active constraints printing 'into' the
acceptable design region. The candidates for NTC are stored in
an array denoted by R(1,J) for1=0,1, ..., 8, J=0,1, ..., 29.
R is generated in the program. The first two columns must be
redetermined every time R is needed, because they represent the
normal to the deflection or acceleration constraints as the case
may be. The remaining columns are constant and need be
formulated once. The R matrix is shown in Figure III-1. The odd
number rows 1 thru 31 refer to the lower bounds and the even
numbered rows to the upper bounds. Rows 3 thru 12 are divided
by'\/Z_to be normalized. These rows represent constraint set A.
The remaining constraints sets B, C, and D are represented in
columns 13 thru 24, 25 thru 31, and 1 thru 2 respectively.

If no constraints are active, the move in the design space is
the gradient direction. However, if one or more constraints are
in violation at the jth design, it is desirable to find the largest
component of the gradient having the property that it does not point

into a constraint 'wall.' Before proceeding, it should be recalled
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that when the jth design point is on a constraint the most advan-
tageous moves are not always along that constraint. Thus, it is
desirable to have the ability to move off of any constraint at any
time during the redesign process and also the ability to determine
when it is desirable to leave the constraint and when to remain on
it.

anaape—. t

Where N']'.'Cj is the normal of the j h constraint in violation

and ACG is the gradient, if ;\—Eahas a positive component in the
E’I'E} direction the result is to move off the constraint. If the
inner product is negative, the component of the gradient in the
plane of the constraint j is subtracted from the gradient resulting

in remaining on the constraint surface.

The direction sought is termed u. The vector u has the

. . . . .th
effect of removing the component of ACG which will violate the j
constraint. A more regerous development of u is shown below.

The development is taken from Reference 2. Derivation of move

direction to max uTg(;) with Ni(;) fori=1,2, ... Q< M-1 and
x = (xl, xZ, .o xNI) The Ni denoting the active constraint
normals.

Denote the gradient by E, and

[N, N,, ... N, ] by NTC.
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Then the allowable direction u must be orthogonal to all

constraint normals in order to lie in their tangent plane or

NTCT ; = 0. For convenience, let the magnitude of 1: be 1 or
atla = 1.

The problem may be solved by the method of Lagrangian

multipliers for constraints satisfied as equalities. That is,

maximize ¢ with 3 4 = 1 and NTC ‘& = 0. Thus,
“T— =T T— —~T—
¢=gTu+X1 NTC u+k2(l-u u) (1)

where Xl is column vector of the Lagrangian multipliers xlj and
XZ is a single multiplier to be found.
Setting

% . ogives(g) T+ (x, 'NTCT) T4 2. (T)T =0
ou, ! 2 (2)

for j= (1,2, ..M), or g + NTC X, + 2}, u=0 (3)

2

Then using the fact that NTC Tu=0and multiplying (2) by

NTCT gives
T — T -
NTC g + (NTC NTC) X, = 0 (4)

The inverse of (NTCT NTC) exists because the columns of NTC are

independent. Let NTCT NTC)-1 = VQ
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A, is then - V@ NTC g (5)

u is found in terms of A from equation (3) to be

2

% = =— {g- NTC-VQ-NTC g}
2\,
A, is found by requiring Tu =1
T 1 T, ., T 1 . T T, T
u =5— [{I-NTC- VQ-NTC " }g] ~ =5— [g [I-NTC-VQ-NTC ] ]
2%, 2n, LB
~T 1 =T T, T T, -
Wu=1l=——7g [I-NTC'VQ-NTC'] -[I-NTC'VQ-NTC ]g
49
2
2 1~ -
x, =g 2T [1- NTC-VQ:-NTC'] « [I - NTC-VQ-NTC '] g

Thus the direction of u is g - NTC- VQ. NTCTE

Again it is emphasized that if any of the columns of NTC have
a positive inner product with gradient that column is deleted, thus
allowing freedom to move off of the constraint.

The process for determining the first step size, L, is
derived for strictly linear constraints. However, with the
corrective length process described and due to the nature of
the constraints, the procedure applies itself well near the one

nonlinear constraint.

After ; is found, the difference between the allowable bound

—

B., and the value of the bound function B (C) is determined for
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every constraint.

That is, A Bi

n

ell (Ei - b_(x)).

The term el1 is +1 if i refers to an upper bound and -1 for lower

bounds. Thus A Ei > 0 indicates an acceptable region and ABi <0
an unacceptable region. When AE_ = ¢ the constractive is said to
i

be active.

The rate of change of A Ei

in the @ direction is found. With
this linear estimation the length of 4 to render constraint i active
is found. A Ei changes with u as the inner product of the ith
column of the R matrix and u.

This is easily seen by realizing that the i column of the R
matrix (defined in the first part of this Appendix) is a vector
orthogonal to the ith constraint. The component of U in the Ri
direction or Agi’ is (Ei, ;) for It-{l = 1. Thus, for L - a, where
L is the LINLEN length, Agi can be forced as close to ¢ as.
desired. .

AB
L = —/—
R, v)
The minimum Li found from testing all the constraints is used.
The general formula for L is
A B,
1 2 '(Ei’ ‘-;)i
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¢.' is the sign of (R., )

2
There is one restriction on allowable L's '"That is any L
which is negative and A§i is positive should be ignored.' The
reason for this restriction is because positive Aii # an acceptable
design and negative L is the opposite direction of u which means
an increase in merit rather than a decrease. The increase would

be permissible if AB is negative or the program is trying to return

to the acceptable region.
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APPENDIX IV
KUHN-TUCKER CONVERGENCE CONDITIONS

Before describing the Kuhn- Tucker(lo} convergence conditions
it will be helpful to make several definitions.

A function f(x) is convex if
(1-6) £(x') + o6f(x) > £{(1-6) X' + 6 x } (Iv-1)

forall 0 < §< 1. All x and x' must be in region such that £(x)
and f(x') are defined.
A function f(x) is concave is -f(x) is convex; that is,

(1-0)£x") + 0£(x) < £{(1-8) x' + 6 x)} (Iv-2)

forall 0< #< 1. Againall x and x' must be in the region for which
f(x) is defined.

The convergence theorem states that at a local maximum if
one or more constraints are satisfied as equalities, then the
negative gradient of the criterion function will be a nonnegative
linear combination of the gradients to the constraints.

Let the constraints be of the form

g; ) >0 fori= 1,2, ... M. and the criterion be

C(x) to be minimized.
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The minus gradient of the criterion lies in the convex cone of
the gradients of the active constraints.
To test whether x_ is a local minimum, solve the equation

Iv-3 for al and 3’2’

a vgl(i‘i) + a

) ng(:'c'°) = -v cx°) (1v-3)

2

where

Vgl(;o). ng(;o) and VC(;O) are vectors. Ifa1

and a, are nonnegative, the point x° is a local minimum.

The conditions for the above to be valid are that the design
space be convex or satisfy (IV-1) and that the criterion function be
convex at least in the region for which (IV-3) is checked. In
general it is not know whether the conditions above are true. In

this case if (IV-3) is satisfied, further time spent optimizing can

be termed 'confidence time. "
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APPENDIX V

GLOBAL SYMBOLS OF COMPUTER PROGRAM

RS

INTEGERS

I

COoL

FS

WEDGE, VALY

Vector containing one component for each
constraint. Components have integer
value 1 if constraint is active and pro-
gram wants to remain on constraint; 2 if
constraint is active and program wants
to get off; and 0 if constraint is not in
violation,

Values from 0 to 8, used in analysis pro-
cedure to denote gradient components
and -1 denotes best criterion value at
present time.

Number of steps required to analyse a
design.

Indexing integer.

Indexing integer.

Indexing integer.

Number of active constraints which pro-
gram does not want to get off (corres-

ponds to number of 1's in RS)

Has value 7 if C(8) is held fixed, 8
otherwise.

Value 0,1, 2 when moving normal to non-
linear constraint.



Css8, Cs9

LC

ALC
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Input variables allowing program to work
with first 8 variable for CS8 steps and
all 9 for CS9 steps.

Input; number of load condition.

Number of active load condition.

BOOLEAN VARIABLES; VALUE TRUE OR FALSE

GRD

ONE, CDA, CUSP

PK, FO

EXAM, PS

PPG

SBl

Real Variables
T
H

XA

DT

Q,0Q1,02,03, T1

CBT

CBM

True in analysis procedure when deter-
mining gradients.

True when moving normal to nonlinear
constraint.

Suppresses unwanted printout when
moving normal to nonlinear constraint.

True when no constraints are active and
gradient method gets stuck in 'cusp.'

True when PPG is true for two consecu-
tive steps.

Time at each step of analysis procedure.
Step size in analysis procedure.

Maximum allowable deflection or
acceleration,

Time between damping coefficient
variables.

Temporary storage locations.

Absolute value of maximum allowable
time late of change of damping.

Upper bound on damping.




EP

EPL

XE

KLB

KUB

FS11

Storage Arrays:

cy )

c()

T™( )

D( )

v()

ACCT( )

Dc( )
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Tolerance used for constraints.
Tolerance used in convergence check.

Maximum length of allowable move which
does not violate constraints.

6
Set at 10 used when moving normal to
nonlinear constraint.

Displacement at which maximum
acceleration occurs.

Lower bound on spring constants.
Upper bound on spring constants.

Denotes amount variable C(8) is changed
when C(8) is held fixed.

Vector containing best possible design
at present time.

Vector containing design to be compared
with C1( ).

Vector containing times of points used
in analysis.

Vector containing displacements asso-
ciated with TM( ).

Vector containing velocities associated
with TM( ).

Vector containing acceleration asso-
ciated with TM.

Vector containing variations of variables
used in finding gradient.
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MAC(-1)

MD(-1)

MAC( ),MD( )

va(,)

CAL( )

CAU( )

ACG( )
DG( )
v2( ), v3( ), v4( ), vs( ),

DC1( ), bcz( ), Si(,)
S( ), u1( ), u( )

SMX( )
TL( )
NTC(, )

R(i)

Procedure Names:

ANL
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Matrix containing gradient values of
previous steps.

Best criterion value at present from
design C1( ).

Nonlinear constraint value associated
with MAC(-1).

Vector index from 0 to 8 stores values
associated with criterion and constraint

functions respectively.

Array storing inverse of outer product,r
of normals to constraints = (NTC NTC S’

Input vector of allowable lower values
for variables.

Input vector of allowable upper values
for variables.

Vector of gradient components.

Vector normal to nonlinear constraints.
Temporary storage vectors.

Input vector of load pulses.
Input vector of load pulse times.

Array storing vector of normals to
active constraints.

Matrix storing normals to linear
constraints.

Analyses given design, gives maximum
acceleration, maximum displacement,
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active load condition and position of
maximum acceleration.

GRA Computes gradient.
INV Computes inverse of matrix.
LINLEN Computes L, maximum allowable length

of move vector U( ) which will not enter
unacceptable region.
Input for computer program consists of an initial design which is
acceptable, initial values for displacement and velocity, a stepsize
for the analysis, the time interval between successive damping
variables, the variation of each variable used in computing the
gradient, absolute value of maximum allowable time rate of change
of damping, maximum absolute value of nonlinear constraint
function, upper and lower bounds for the variables, tolerances for
constraints and convergence test, values of CS8, CS9, and FS11,
values of load conditions and respective time durations.
A duplication of the computer program written in ALGOL 60

and run on a UNIVAC 1107 follows with flow chart.
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ANALYSIS PROCEDURE; ANL

IF GRD

TRUE I

X+0.0
Y<0.0

FALSE

3

CO)=C1(J)
for J«(0,1, 8)

G+0.0
J=+0.0

l

C(I)eC(1)+DC(I)

GO TO

TF GRO—(¥)—

@®
L

LCBa— c(2) +

(C(3)-C(2))*(T-2DT)/DT

e

T

CB«C(l) +

(C(Z)-C(l)‘)*(T-DT)/_DT —

¢

IF T < 2DT

CB«C(0) +
(C(1)-C(OR*(T/DF)

g

Y

IF T<DT

)

K(1) e Y*H




_START

I

IF T < 4DT|

©

CB=C(3) +

" l(c(4)-C(3))*(T-3DT)/DT

IF T < 5DT

I

CB<«C(4) +

(C(5)-C(4))*(T-4DT)/DT

CBeC(5) je— !

y

IF T < TL(W)

® ©

S<+-0. 0 |[s+SMX(W)|

Fx< C(8) (N

86

—®

KX+ C(6)*C(8) ¥
C(7)*(X-C(8))

@——‘{KX‘— c(6)*X
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START
L(l) -
(-CB*Y-KX+S)*H .
 J :
R(3) o CALCULATE
(Y+0. 05%L(1))*H o Xe0.
x<—X4;0. 5K(2
Te—G+0. 5*%H
CALCULATE
CALCULATE S,CB
S, CB 1
y Te T+G
CALCULATE ‘
KX WITH
%
X < X+0. 5*K(1) K(4) =
(Y+L(3))*H

L(2) = (-CB*(Y+0. 5L(1))
-KX+8)*H

L(3)e (-CB(Y +
0. 5L(2))-KX+S)*H

K(3)e (Y+0, 5L(2))*H

CALCULATE KX
WITH X+X+0. 5K(2)
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START

MD(I) MAX )

4

L(3))-KX+S)*H

FOR - +(1,1, LC)
3

l

Neo—Jo J+1

A(J)e+X=-X %

1
= (K 2 MAC(I) MAX
(K(1)+2K(2)+2K(3)+K(4)) (| vv(w, 1)
FOR Wa—
(1,1, L.C)
B(J)e—Y<«Y + [}
1 (L(1)+2L(2)+2L(3)+L(4))
o MAC(I)—MD(I)
0.0
G- G+H
E(J)=G C(I)=-C(1)
-DC(I)
: |
CALCULATE
X
()._IF GRD
3 TRUE
A(J)=CB*Y+KX é
IF |A@)|<|A@-1)] l

T

MMM(W, 'I)
GO TO Ll.. Lm( Ac@)) IA&((I‘:I(.V:’) I)

FOR J« (0,1, N)
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START

IF GRD
TRUE

EXIT

PROCEDURE

I<I+1

@a I
IFI< 8

GO TO
LGIl..

GRADIENT PROCEDURE GRA

GRD<-TRUE

T

CALL PROCEDURE
ANL

ACG(J)—(-1)*(MAC(J)-MAC(-1).}/DC(J)
MD(J) <(-1)*(MD(J)-MD(-1))/DC(J)
FOR J« (0,1, F)
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START

Q== ACG(J)**;.J
J
FOR J+-(0,1,F

Ql+—= MD(J)#%2
J
FOR J«—(0, 1, F)

l

Qe— Q2
Ql— of

ACG(JY—ACG(J)/Q
MD(J) «+MD(J)/Q1
FOR J<(0,1,F)

WRITE (ACG, MD)

GRD=»-FALSE

L

EXIT PROCEDURE




SI[fAlRT

COI1s—COL+1

’

B(I, J)=5(1-1,J-1)
FOR J=+(1,1,COL)

FOR1I (1,1,COL)

U(J)=B(1,J3)/(B(1,1)
FOR J+ (1,1, COL)

1
U(COL+1) =+ B, 1)

B(K, J)=<B(K+1, J+1)
-B(K+1, 1)*¥U(1+J)

FOR Je(1,1,COL-1)

FOR Ke(1,1,COL-1)

i

B(COL, J)4U(1+J)
FOR Je1,1,COL

FOR I<(1,1,COL)

:
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MATRIX INVERSION
PROCEDURE INV

EXIT
PROCEDURE

VQ(l, J)e—
B(I+1, J+1)
J (1,1, COL)

l«1,1,COL

|

COL=COL-1
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PROCEDURE CALCULATING

START MAXIMUM ALLOWABLE
L« 0.0 DISTANCE OF TRAVEL
Me10° LINLEN

A = 0.0

A = A+R(K, J)*U(K)
FOR K- (0, 1, 8)

M 1F [A] # 0]

y
IFA<O0,0

Del| De -1

A = ABS(A)

B«(-C];T*DT - (C((3-3)/2) |-
-C((7-1)/2)))%-1. 09

®—{IF B/A <M
®

Mle—B/A

L
L2e— -D¥M1

L—®_{ IF L2> Q —@) L<L2

FOR Je—(3,1,12)
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START

|A4-0.0 l

A«U((J-13)/2)

A<+ DG(K)*U(K
K

IF A< 0.0
A .
IF A # 0.0 —(N) G‘lr) ({\D
@ De--1 Da+]
Ae A
Ae|a| ]

[IF 2 < 0.0
| ®
@ B« C((J-B)/2)

l

De1.0.{|De -1.0 l-@)—IF B/A<M
®

Ae|A| 1.2« -D*MI

B<-XA - MD(-1) IFL2>0

IFB;0.0-—®—¢ é?

(15 a~(N)—— L+ L2

1.2« -D*B/A

FOR J = (13, 2, 27)

IF L.Z< L

Q=2
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START

A =U((J-14)/2)

IFA<O0.,0

DL

D<~1]

Ae|A|

B = CAU(J) -
C((3-14))/2)

(N)e— IF B/A< M

Mle B/A

‘

L2« D¥M1

@——1F L2> 0

FOR J«(14, 2, 26)

FINAL VALUE
OF L




READ
INPUT DATA

l

PRINT
INPUT DATA

SET BOOLEANS
EQUAL TO FALSE

ANALYSE STARTING
DESIGN

95

PRINT
TIME, DISPLACEMENTS

VELOCITIES, ACCELERATIONS

MAC (-1), MD (-1)

IF DESIGN IS
UNACCEPTABLE
GO TO LE

Lé. .

\
CONSTRUCT

GO TO
L71..

C(1)=-C1(1)
1=(0,1,8)

GO TO LB3..

[ )

®

|MD(-1)] < xA

T

L7..
[

R MATRIX




GO TO
L7..

1

CUSP<-FALSE

96

CUSP < TRUE

i

WEDGE = 2 —-®

VALY=0

'MD(-1) ¢ MD(1)

REPLACE
CleC

MAC(-1)+MAC(1)

@

[MD(1)| < XA —@®

®)»—{a < 0. 0001 PETR
ANL$
WEDGE = 2 @
TEST SIDE
IF CUSP .G. CONSTRAINTEJ
Y
CUSP*FALSE LB} 1.,
C(I) cCi1(I)+1.23*DG(I)
I1=:0,1,F)
A LBI..
1
Q< 0. 8*Q
- L71.. GRA




START
—
LB3..

C(1)+C1(3)
I=(0,1,F)

l Q3e1.0

B

VALY <2

FIND ACTIVE

97

®

GO TO

CONSTRAINTS
COL=—0
RS(1) OR |,_(¥)
RS(2) =1 '
. COLUMN
1 OR 2 OF
FILL NTC HNTC
MA TRIX
GO TO LBA4..
LB5. .
MOVE OFF
- EACH CONSTRAINT
PRINT 'R UNTIL COL < 8
I o
1F COL = 0; N IFF COL > 8
—@®—{co 0

—®
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BETTER

TEST CRITERION

VALUE

®@—1F L <107° L .-fDECREASE L
o]

¢

4_

_—

SHORTEN

L %0. 81

TAKE STEP IN

L

Le 0.81L

!

IF 1<1 0" °%L
MOVE IN

C(8) DIRECTION
AND SATISFYING
ALL OTHER
CONSTRAINTS

DIREC TION Il
NORMAL TO ||IF |MD(8)| > xAl~(N)
ACTIVE
BEHAVIOR
CONSTRAINT
SATISFYING I 8
ALL OTHER ANL$
CONSTRAINTS
c) cim+L*u{) |,
I=(0,1,F)
LINLEN$
1y
WRITE U
MAKE
U(I) ¢ ACG(I) ol =1
1=(0,1,F)
START [CALCULATE
START U(1)

®)—

I1=(0,1,F)
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START
o

™ L<0.91L

c(1) c1(1) +
L*U(I)
I=(0,1,F)

I=-8
ANL

4

IF |MD (8)]
< XA §

IF MAC (8)
< MAC (-1)

C1l(1)y=C(1)
1=(0,1,F)

"MD(-1)=MD(8)
| MAC (-1)=-MAC (8)

yy
Q| 2EE|

!

QeMAX (Ql1, Q)

A
Ql< NORM OF
(NTC TNTc)‘1

IF Q < EPL/
(Q2(2*Q+1. 0))

Lé..

GO TO 1 TLE..

STOP
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